Climate Change: Antarctica

The amount of sea ice in Antarctica over time
DS350
world
climate
Author

DS 350

Published

May 8, 2024

Data details

There are 40 rows and 5 columns. The data source1 is used to create our data that is stored in our pins table. You can access this pin from a connection to posit.byui.edu using hathawayj/climate_change_antarctica.

This data is available to all.

Variable description

  • Entity: Country name
  • Code: 3-letter code for each country
  • Year: Year
  • antarctic_sea_ice_september: Amount of sea ice in Antarctica in September (millions of square kilometers)
  • antarctic_sea_ice_february: Amount of sea ice in Antarctica in February (millions of square kilometers)

Variable summary

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Year 0 1 1998.5 11.69 1979 1988.75 1998.5 2008.25 2018 ▇▇▇▇▇
antarctic_sea_ice_september 0 1 18527513.5 436200.40 17680013 18185013.29 18565013.6 18805013.74 19760014 ▂▇▇▂▁
antarctic_sea_ice_february 0 1 3072252.2 424448.59 2290002 2840002.08 2985002.2 3212502.35 3890003 ▂▅▇▁▃

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Entity 0 1 10 10 0 1 0
Code 0 1 3 3 0 1 0
Explore generating code using R
pacman::p_load(tidyverse, pins, connectapi, owidR, googledrive)

# owid() doesn't work for this dataset right now because the source site is down 5/8/2024

# owid() function downloads current data directly from Our World in Data.
# Use owid_search() to search for other OWID datasets.
# For more information, see the package documentation here: https://github.com/piersyork/owidR/blob/main/README.md
# climate_change_antarctica <- owid('climate-change-antarctica')


# Until that issue is resolved, the data can be found in the google drive
# Download the file from google drive
sdrive <- shared_drive_find("byuids_data") # This will ask for authentication.
google_file <- drive_ls(sdrive) |>
  filter(stringr::str_detect(name, "climate-change-antarctica"))
tempf <- tempfile()
drive_download(google_file, tempf)
climate_change_antarctica <- read_csv(tempf)

# Publish the data to the server with Bro. Hathaway as the owner.
board <- board_connect()
pin_write(board, climate_change_antarctica, type = "parquet", access_type = "all")

pin_name <- "climate_change_antarctica"
meta <- pin_meta(board, paste0("hathawayj/", pin_name))
client <- connect()
my_app <- content_item(client, meta$local$content_id)
set_vanity_url(my_app, paste0("data/", pin_name))

Access data

This data is available to all.

Direct Download: climate_change_antarctica.parquet

R and Python Download:

URL Connections:

For public data, any user can connect and read the data using pins::board_connect_url() in R.

library(pins)
url_data <- "https://posit.byui.edu/data/climate_change_antarctica/"
board_url <- board_connect_url(c("dat" = url_data))
dat <- pin_read(board_url, "dat")

Use this custom function in Python to have the data in a Pandas DataFrame.

import pandas as pd
import requests
from io import BytesIO

def read_url_pin(name):
  url = "https://posit.byui.edu/data/" + name + "/" + name + ".parquet"
  response = requests.get(url)
  if response.status_code == 200:
    parquet_content = BytesIO(response.content)
    pandas_dataframe = pd.read_parquet(parquet_content)
    return pandas_dataframe
  else:
    print(f"Failed to retrieve data. Status code: {response.status_code}")
    return None

# Example usage:
pandas_df = read_url_pin("climate_change_antarctica")

Authenticated Connection:

Our connect server is https://posit.byui.edu which you assign to your CONNECT_SERVER environment variable. You must create an API key and store it in your environment under CONNECT_API_KEY.

Read more about environment variables and the pins package to understand how these environment variables are stored and accessed in R and Python with pins.

library(pins)
board <- board_connect(auth = "auto")
dat <- pin_read(board, "hathawayj/climate_change_antarctica")
import os
from pins import board_rsconnect
from dotenv import load_dotenv
load_dotenv()
API_KEY = os.getenv('CONNECT_API_KEY')
SERVER = os.getenv('CONNECT_SERVER')

board = board_rsconnect(server_url=SERVER, api_key=API_KEY)
dat = board.pin_read("hathawayj/climate_change_antarctica")