Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist | 
|---|---|---|---|---|---|---|---|---|---|---|
| NGT | 0 | 1.00 | 7.21 | 6.17 | 0 | 2 | 6 | 10 | 48 | ▇▃▁▁▁ | 
| IGT | 96 | 0.63 | 8.12 | 6.22 | 0 | 3 | 7 | 11 | 42 | ▇▅▁▁▁ | 
| Diabetes | 143 | 0.45 | 9.70 | 7.21 | 0 | 4 | 9 | 13 | 46 | ▇▆▁▁▁ | 
MATH 221
April 30, 2024
There are 260 rows and 3 columns. The data source1 is used to create our data that is stored in our pins table. You can access this pin from a connection to posit.byui.edu using hathawayj/insulin_resistance_depression.
This data is available to all.
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist | 
|---|---|---|---|---|---|---|---|---|---|---|
| NGT | 0 | 1.00 | 7.21 | 6.17 | 0 | 2 | 6 | 10 | 48 | ▇▃▁▁▁ | 
| IGT | 96 | 0.63 | 8.12 | 6.22 | 0 | 3 | 7 | 11 | 42 | ▇▅▁▁▁ | 
| Diabetes | 143 | 0.45 | 9.70 | 7.21 | 0 | 4 | 9 | 13 | 46 | ▇▆▁▁▁ | 
NULLlibrary(tidyverse)
library(pins)
library(connectapi)
insulin_resistance_depression <- read_csv('https://github.com/byuistats/data/raw/master/InsulinResistanceDepression/InsulinResistanceDepression.csv')
# Publish the data to the server with Bro. Hathaway as the owner.
board <- board_connect()
pin_write(board, insulin_resistance_depression, type = "parquet", access_type = "all")
pin_name <- "insulin_resistance_depression"
meta <- pin_meta(board, paste0("hathawayj/", pin_name))
client <- connect()
my_app <- content_item(client, meta$local$content_id)
set_vanity_url(my_app, paste0("data/", pin_name))This data is available to all.
Direct Download: insulin_resistance_depression.parquet
For public data, any user can connect and read the data using pins::board_connect_url() in R.
library(pins)
url_data <- "https://posit.byui.edu/data/insulin_resistance_depression/"
board_url <- board_connect_url(c("dat" = url_data))
dat <- pin_read(board_url, "dat")Use this custom function in Python to have the data in a Pandas DataFrame.
import pandas as pd
import requests
from io import BytesIO
def read_url_pin(name):
  url = "https://posit.byui.edu/data/" + name + "/" + name + ".parquet"
  response = requests.get(url)
  if response.status_code == 200:
    parquet_content = BytesIO(response.content)
    pandas_dataframe = pd.read_parquet(parquet_content)
    return pandas_dataframe
  else:
    print(f"Failed to retrieve data. Status code: {response.status_code}")
    return None
# Example usage:
pandas_df = read_url_pin("insulin_resistance_depression")Our connect server is https://posit.byui.edu which you assign to your CONNECT_SERVER environment variable. You must create an API key and store it in your environment under CONNECT_API_KEY.
Read more about environment variables and the pins package to understand how these environment variables are stored and accessed in R and Python with pins.