Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Duration.of.Symptoms..Zinc. | 0 | 1.00 | 4.26 | 3.47 | 0.25 | 2 | 4.0 | 6.0 | 16 | ▇▆▂▁▁ |
| Duration.of.Symptoms..Placebo. | 9 | 0.76 | 12.82 | 10.45 | 2.00 | 5 | 9.5 | 17.5 | 40 | ▇▃▂▁▁ |
MATH 221
May 2, 2024
There are 37 rows and 2 columns. The data source1 is used to create our data that is stored in our pins table. You can access this pin from a connection to posit.byui.edu using hathawayj/zinc_for_colds.
This data is available to all.
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Duration.of.Symptoms..Zinc. | 0 | 1.00 | 4.26 | 3.47 | 0.25 | 2 | 4.0 | 6.0 | 16 | ▇▆▂▁▁ |
| Duration.of.Symptoms..Placebo. | 9 | 0.76 | 12.82 | 10.45 | 2.00 | 5 | 9.5 | 17.5 | 40 | ▇▃▂▁▁ |
NULL
library(tidyverse)
library(pins)
library(connectapi)
zinc_for_colds <- read_csv('https://github.com/byuistats/data/raw/master/ZincForColds/ZincForColds.csv') %>%
select(!Souce) # Delete description column
# Publish the data to the server with Bro. Hathaway as the owner.
board <- board_connect()
pin_write(board, zinc_for_colds, type = "parquet", access_type = "all")
pin_name <- "zinc_for_colds"
meta <- pin_meta(board, paste0("hathawayj/", pin_name))
client <- connect()
my_app <- content_item(client, meta$local$content_id)
set_vanity_url(my_app, paste0("data/", pin_name))This data is available to all.
Direct Download: zinc_for_colds.parquet
For public data, any user can connect and read the data using pins::board_connect_url() in R.
library(pins)
url_data <- "https://posit.byui.edu/data/zinc_for_colds/"
board_url <- board_connect_url(c("dat" = url_data))
dat <- pin_read(board_url, "dat")Use this custom function in Python to have the data in a Pandas DataFrame.
import pandas as pd
import requests
from io import BytesIO
def read_url_pin(name):
url = "https://posit.byui.edu/data/" + name + "/" + name + ".parquet"
response = requests.get(url)
if response.status_code == 200:
parquet_content = BytesIO(response.content)
pandas_dataframe = pd.read_parquet(parquet_content)
return pandas_dataframe
else:
print(f"Failed to retrieve data. Status code: {response.status_code}")
return None
# Example usage:
pandas_df = read_url_pin("zinc_for_colds")Our connect server is https://posit.byui.edu which you assign to your CONNECT_SERVER environment variable. You must create an API key and store it in your environment under CONNECT_API_KEY.
Read more about environment variables and the pins package to understand how these environment variables are stored and accessed in R and Python with pins.